Professor Jack Clegg
Primary research interest
Metallo-supramolecular chemistry
About me
I completed my undergraduate studies in Chemistry, History and German at the University of Sydney graduating with a University Medal, before completing a Bachelor of Laws and PhD in Chemistry at the same institution. I made extensive contributions towards university life during that time which was recognised by the award of the Convocation Medal. During the same period, I spent time on the board of the Australian Youth Orchestra and a regional Credit Union in NSW. I then spent two years on a prestigious Marie Curie Fellowship at the University of Cambridge where I was also a Director of Studies at Emmanuel College. I returned to Australia to join The University of Queensland in 2012. I became an ARC Future Fellow in 2014. I was awarded a 2015 Queensland Young Tall Poppy Award and the 2018 Malcolm McIntosh Prize for Physical Scientist of the Year. I have authored more than 150 publications including 4 book chapters, which have received over 5000 citations. I have an h-index of 39.
Research focus and collaborations
My research is in the field of metallo-supramolecular chemistry and bridges the traditional fields of organic and inorganic chemistry. I use a self-assembly approach and by combing the inherent physical and chemical properties of metals with organic (ligand) components I can design and synthesis new materials with central cavities that are capable of selectively binding smaller molecules. The resulting nanoscale structures can be either discrete or polymeric (framework) in nature. The potential applications for these compounds are diverse including drug delivery, catalysis, sequestration, separation and gas storage. Many of my compounds are characterised by X-ray diffraction methods. Due to their large size, somewhere between average “small” molecules and biological macromolecules (and challenging diffraction properties), I often employ synchrotron radiation for analysis.
My research work can roughly divided into the following sub-categories, although there are not always clear boundaries between each of them.
Metallo-supramolecular capsules and cages
Careful consideration of the geometrical properties of metals and organic components allows for the construction of a variety of discrete “supermolecules” formed from the spontaneous aggregation of numerous predesigned components. These structures, often with central cavities, take numerous forms from two-dimensional architectures such as triangular and square architectures to elaborate and beautiful three-dimensional species such as tetrahedra and cubes. Changing the size, shape, properties and charge of the architecture allows for the selective encapsulation of different materials inside them. Anions, cations, multiple solvent molecules, gases, drug molecules and pyrophoric substances have all been shown to be bound inside the larger self-assembled molecules. In addition, metallo-supramolecular architectures have been shown to catalyse a variety of reactions mimicking the enzymatic processes found in biological systems.
Metal-organic frameworks
Metal-organic frameworks (MOFs) are a type of crystalline coordination polymer constructed from the linkage of metal ions by bridging polydentate ligands. These materials often display the very useful industrial properties such as regularity, porosity, robustness and high surface-areas leading to applications in heterogeneous-catalysis, gas separation and storage. Because of the way that these molecules are formed it is often very difficult to predict there structures and properties. My research is targeted towards the design and synthesis of porous MOFs with predictable functions. The use of this targeted pre-design strategy will lead directly to the development of complex materials with applications and properties not accessible by other methods. I use a hierarchical self-assembly approach to engineer these functional materials. In this strategy I aim to transcribe the well understood binding properties of discrete metallo-supramolecular architectures onto the new framework products resulting in very large 3D voids and considerable structural complexity.
Complex systems and interlocked architectures
In general, the molecules we study under the heading of “chemistry” are far less complicated than those that exist in biology and nature, where many different molecules come together in a mixture or “system” to perform tasks that are not possible by individual molecules on their own. Thus there is an emerging interest in understanding how chemists can design mixtures of molecules to emulate the “complexity” and functions of natural systems. The broad approaches to addressing this problem include the inclusion of reversible (dynamic covalent) bonds into materials, the study of the way that mixtures of molecules interact with each other and the generation of topologically complex “interlocked” molecules such as catenanes, knots and ravels. Collectively this knowledge produced will allow for the construction of synthetic assembly lines such as those employed by Nature and lead to the development of molecular machines.
Funded projects
- Queensland Young Tall Poppy Science Award (2015) for outstanding achievements in the area of scientific research and communication. Awarded by the Australian Institute for Policy and Science.
- UQ Foundation Research Excellence Awards (2015)
Metal-organic materials for enantiomeric discrimination and chiral separation - ARC Future Fellowship (2014-2018)
Metallo-Supramolecular Materials for Chiral Discrimination and Enantiomeric Separation
Total value of grant $572,104 - ARC Discovery Project (2014-2016) with A/Prof. J. C. McMurtrie (QUT)
Flexible crystals: inducing new physical properties in crystalline materials through the combination and control of intermolecular interactions
Total value of grant $430,000 - ARC Discovery Project (2013-2015)
Designing metal-organic materials through a hierarchical self-assembly strategy
Total value of grant $390,000
Teaching interests
- Inorganic chemistry
- Supramolecular chemistry
- Coordination chemistry
- Crystallography
- Experimental chemistry
Achievements and awards
- Chartered Chemist and Member of the Royal Australian Chemical Institute
- Member of the Royal Society of Chemistry
- Member of the Society of Crystallographers in Australia and New Zealand
Featured publications
Thompson, Amy J., Powell, Joshua A., Melville, Jamie N., McMurtrie, John C., and Clegg, Jack K. (2023). Crystals of aliphatic derivatives of [Cu(acac) 2 ] have distinct atomic‐scale mechanisms of bending. Small 19 (25) 2207431 1-6. https://doi.org/10.1002/smll.202207431
Siddique, Rashid G., Arachchige, Kasun S. A., AL‐Fayaad, Hydar A., Thoburn, John D., McMurtrie, John C., and Clegg, Jack K. (2022). Controlling the complexity and interconversion mechanisms in self‐assembled [Fe 2 L 3 ] 4+ helicates and [Fe 4 L 6 ] 8+ cages. Angewandte Chemie 134 (7) . https://doi.org/10.1002/ange.202115555
- Thompson, Amy J., Price, Jason R., McMurtrie, John C., and Clegg, Jack K. (2021). The mechanism of bending in co-crystals of caffeine and 4-chloro-3-nitrobenzoic acid. Nature Communications 12 (1) 5983 5983. https://doi.org/10.1038/s41467-021-26204-z
Worthy, Anna, Grosjean, Arnaud, Pfrunder, Michael C., Xu, Yanan, Yan, Cheng, Edwards, Grant, Clegg, Jack K., and McMurtrie, John C. (2018). Atomic resolution of structural changes in elastic crystals of copper(II) acetylacetonate. Nature Chemisty 10 (1) 65-69. https://doi.org/10.1038/nchem.2848
Pfrunder, Michael C., Brock, Aidan J., Brown, Joshua J., Grosjean, Arnaud, Ward, John, McMurtrie, John C. and Clegg, Jack K. (2018) A three-dimensional cubic halogen-bonded network. Chemical Communications, 54 32: 3974-3976. doi:10.1039/c8cc02178c
- Worthy, Anna, Grosjean, Arnaud, Pfrunder, Michael C., Xu, Yanan, Yan, Cheng, Edwards, Grant, Clegg, Jack K. and McMurtrie, John C. (2017) Atomic resolution of structural changes in elastic crystals of copper(II) acetylacetonate. Nature Chemisty, 10 1: 65-69. doi:10.1038/nchem.2848
- Brock, Aidan J., Al-Fayaad, Hydar, Pfrunder, Michael C. and Clegg, Jack K. (2017). Functional metallo-supramolecular polyhedral capsules and cages. In Rahul Banerjee (Ed.), Functional supramolecular materials: from surfaces to MOFs (pp. 325-387) Cambridge, United Kingdom: RSC Books. doi:10.1039/9781788010276-00325
- Clegg, Jack K. and McMurtrie, John C. (2016). Chiral metallosupramolecular polyhedra. In F. Richard Keene (Ed.), Chirality in supramolecular assemblies: causes and consequences (pp. 218-256)Chichester, West Sussex, United States: Wiley. doi:10.1002/9781118867334.ch8
Researcher biography
I completed my undergraduate studies in Chemistry, History and German at the University of Sydney graduating with a University Medal, before completing a Bachelor of Laws and PhD in Chemistry at the same institution. I made extensive contributions towards university life during that time which was recognised by the award of the Convocation Medal. During the same period, I spent time on the board of the Australian Youth Orchestra and a regional Credit Union in NSW. I then spent two years on a prestigious Marie Curie Fellowship at the University of Cambridge where I was also a Director of Studies at Emmanuel College. I returned to Australia to join The University of Queensland in 2012. I became an ARC Future Fellow in 2014. I was awarded a 2015 Queensland Young Tall Poppy Award and the 2018 Malcolm McIntosh Prize for Physical Scientist of the Year. I have authored more than 200 publications including 4 book chapters, which have received over 7000 citations. I have an h-index of >42.